catena-Bis(benzenesulfonato)bis(ethanol)cobalt(II): Preparation, Properties and Crystal Structure

A. GUERRERO-LAVERAT, A. RAMÍREZ, A. JERÓNIMO, A. SANTOS

Instituto de Química Inorgánica 'Elhuyar', C.S.I.C., Serrano 113, 28006 Madrid, Spain

F. FLORENCIO, S. MARTÍNEZ-CARRERA and S. GARCÍA-BLANCO

Departamento de Rayos X, Instituto 'Rocasolano', C.S.I.C., Serrano 119, 28006 Madrid, Spain

(Received July 5, 1986; revised October 22, 1986)

Abstract

Bis(benzenesulfonato)bis(ethanol)cobalt(II), Co-(BS)₂(EtOH)₂, was crystallized from a solution of anhydrous bis(benzenesulfonato)cobalt(II), Co(BS)₂, in absolute ethanol. The compound crystallizes in the monoclinic space group $P2_1/c$ with a = 10.313(2), b = 20.114(5), c = 10.835(5) Å, $\beta = 118.33(2)^\circ$, Z =4. The structure was determined from 5764 observed reflections and refined to R = 0.076. The Co atoms show a distorted octahedral coordination, being bonded to four oxygen atoms of four different BS⁻ anions and to two oxygen atoms of EtOH. Each BS⁻ anion bridges two Co atoms. Hydrogen bonds between the OH groups of EtOH and the uncoordinated oxygen of the BS⁻ anions are formed.

IR and electronic spectral data and magnetic moments of $Co(BS)_2(EtOH)_2$ were studied and compared with those of related compounds.

Introduction

Within a general study on metal arylsulfonates this work deals with the preparation, properties and crystal structure of the polymeric compound [Co-(BS)₂(EtOH)₂]_n, (BS = benzenesulfonate). Only the anhydrous cobalt(II) sulfonates, Co(RSO₃)₂, (R = CF₃, CH₃, p-CH₃-C₆H₄, C₆H₅, F) have been previously described [1-3]. The magnetic and spectral (electronic and IR) properties of these compounds lead to the conclusion that the metal ions are in an octahedral environment of oxygen atoms, each sulfonate anion being three-coordinate.

Similar studies on $Co(RSO)_3)_2 \cdot 6H_2O$ compounds (R = C₆H₅, *p*-CH₃-C₆H₄), together with the crystal structure determination, have demonstrated that these compounds must be formulated as [Co(H₂-O)₆](RSO₃)₂ salts [4].

Experimental

Preparation of $Co(BS)_2(EtOH)_2$ (1)

Anhydrous $Co(BS)_2$ was prepared by dehydration of $Co(BS)_2 \cdot 6H_2O$ [4] for 72 h at 190 °C. A concentrated solution of the mauve powder so obtained in absolute ethanol was evaporated under vacuum in a desiccator over $CaCl_2$. Wine-red crystals of $Co(BS)_2(EtOH)_2$ were obtained. Anal. Found: C, 41.01; H, 4.63; Co, 12.50; BS⁻, 67.65. Calc. for $C_{16}H_{22}CoO_8S_2$: C, 41.29, H, 4.76; Co, 12.66; BS⁻, 67.57%. Co was determined by complexometry with EDTA and murexide as indicator. BS⁻ was determined as HBS with NaOH after running of an aqueous solution of the substance through an acid resin column.

Magnetic susceptibilities were determined using a conventional Faraday system for low temperatures. Infrared spectra in Nujol mulls were recorded on a FT Nicolet 60SX spectrophotometer. Electronic spectra were obtained on a powdered sample (diffuse reflectance) using a Kontron UVIKON 820 spectrophotometer.

Thermal analysis data were obtained with a Dupont 951 Thermobalance at 10 °C/min.

Crystal Structure Determination of Co(BS)₂(EtOH)₂

Crystal data

 $C_{16}H_{22}COO_8S_2$, M = 465.398, monoclinic, space group $P2_1/c$, a = 10.313(2), b = 20.114(5), c = 10.835(5) Å, $\beta = 118.33(2)^\circ$, V = 1978 Å³ (by least-squares refinement on diffractometer angles for 25 automatically centred reflections, (λ (Mo K α) = 0.71069 Å), Z = 4, $D_x = 1.563$ g/cm³. Crystal dimensions (distances to faces from centre); 0.020 × 0.052 × 0.101 mm, μ (Mo K α) = 11.054 cm⁻¹.

Data collection and processing

ENRAF NONIUS-CAD4 diffractometer, $\omega/2\theta$ mode with ω scan width = 1.10 + 0.34 tan θ , speed

20/6 deg/min, graphite-monochromated Mo K α radiation; 5764 observed reflections (merging R = 0.01), giving 2753 observed reflections for $2 < \theta < 30^{\circ}$ with $I > 2\sigma(I)$. Two standard reflections measured every 90 min. No decomposition detected during processing; Lorentz and polarization corrections were applied but no correction for absorption was made. Atomic scattering factors and dispersion coefficients taken from International Tables for X-ray Crystallography (1974).

Structure analysis and refinement

Final difference Fourier map had no significant peaks. Computations were made by programs PESOS [5], XRAY76 [6], PARST [7] on a VAX11/750 computer.

Atomic coordinates are given in Table I, bond lengths and angles in Table II.

TABLE Ia. Atomic Parameters for Non-hydrogen Atoms^a

Atom	x/a	y/b	z/c	U _{eq}
Co1	1.0000(0)	0.5000(0)	0.0000(0)	28(1)
Co2	0.5000(0)	0.5000(0)	0.0000(0)	24(1)
S1	0.7849(2)	0.4061(1)	0.0819(2)	23(1)
S2	0.3045(2)	0.4080(1)	0.1048(3)	34(1)
011	0.8912(6)	0.4591(3)	0.1079(7)	28(3)
012	0.6608(7)	0.4294(3)	0.1025(7)	37(3)
013	0.7418(7)	0.3726(3)	-0.0496(7)	35(3)
O21	0.3958(8)	0.4657(3)	0.1178(7)	37(3)
O22	0.1625(7)	0.4259(4)	0.0925(8)	49(3)
O23	0.2876(9)	0.3628(4)	-0.0073(8)	52(4)
01	0.8782(9)	0.4397(4)	-0.1686(9)	49(4)
O 2	0.3890(9)	0.4318(4)	-0.1561(8)	45(3)
C11	0.8744(8)	0.3464(4)	0.2174(9)	26(3)
C12	0.8076(10)	0.3236(5)	0.2916(11)	38(4)
C13	0.8762(13)	0.2722(6)	0.3879(12)	52(5)
C14	1.0085(13)	0.2464(5)	0.4079(12)	51(5)
C15	1.0731(11)	0.2702(5)	0.3329(11)	44(4)
C16	1.0073(11)	0.3209(4)	0.2360(10)	33(4)
C21	0.3965(0)	0.3642(0)	0.2643(0)	44(0)
C22	0.4246(0)	0.2958(0)	0.2569(0)	75(0)
C23	0.5033(0)	0.2634(0)	0.3915(0)	118(0)
C24	0.5461(0)	0.2981(0)	0.5142(0)	163(0)

TABLE Ia. (6	continued)
--------------	-----------	---

Atom	x/a	y/b	z/c	U_{eq}
C25	0.5141(0)	0.3633(0)	0.5157(0)	124(0)
C26	0.4386(0)	0.3984(0)	0.3877(0)	75(0)
C1	0.0859(14)	0.5878(7)	0.2692(13)	56(5)
C2	0.1415(22)	0.5429(10)	0.3926(18)	84(9)
C3	0.7082(19)	0.5537(7)	0.2991(14)	74(7)
C4	0.7752(19)	0.6146(10)	0.3817(19)	84(9)

^aCoordinates and thermal parameters as: $U_{eq} = (1/3)\Sigma(U_{ij} - a_i^*a_j a_i a_j \cos(a_i, a_j)) \times 10^3$.

TABLE Ib. Thermal Parametrs for Non-hydrogen Atoms^a

Atom	<i>U</i> 11	U22	U ₃₃	U12	U13	U23
Co1	21(1)	30(1)	34(1)	2(1)	13(1)	10(1)
Co2	22(1)	21(1)	35(1)	0(1)	16(1)	3(1)
S 1	21(1)	21(1)	30(1)	0(1)	15(1)	5(1)
S2	25(1)	30(1)	47(1)	2(1)	18(1)	11(1)
011	20(3)	28(3)	41(4)	-2(2)	19(3)	5(3)
012	25(3)	35(4)	55(4)	10(3)	24(3)	10(3)
O13	32(3)	38(4)	36(3)	-7(3)	17(3)	1(3)
O21	43(4)	27(4)	49(4)	-4(3)	28(3)	3(3)
O22	31(3)	52(5)	75(5)	18(3)	34(4)	43(4)
O23	61(5)	39(4)	62(5)	-13(4)	33(4)	1(4)
01	52(5)	59(5)	49(4)	-21(4)	35(4)	-5(4)
02	45(4)	39(4)	41(4)	-11(3)	13(3)	-4(3)
C11	22(4)	21(4)	34(4)	1(3)	12(3)	-4(3)
C12	35(5)	42(5)	47(5)	10(4)	28(4)	18(4)
C13	66(7)	50(6)	51(6)	4(5)	37(6)	31(5)
C14	62(7)	35(6)	58(7)	17(5)	31(6)	21(5)
C15	40(5)	45(6)	49(6)	15(5)	24(5)	12(5)
C16	43(5)	26(4)	40(5)	7(4)	26(4)	5(4)
C21	27(0)	47(0)	63(0)	14(0)	26(0)	33(0)
C22	54(0)	54(0)	134(0)	13(0)	59(0)	46(0)
C23	61(0)	87(0)	189(0)	24(0)	45(0)	102(0)
C24	56(0)	261(0)	157(0)	34(0)	39(0)	172(0)
C25	82(0)	200(0)	76(0)	2(0)	25(0)	76(0)
C26	59(0)	97(0)	66(0)	4(0)	28(0)	26(0)
C1	60(7)	64(8)	49(6)	-8(7)	32(6)	-9(6)
C2	83(11)	111(14)	60(9)	28(11)	36(9)	22(9)
C3	97(12)	58(8)	45(7)	-16(8)	14(7)	-10(6)
C4	72(11)	92(13)	72(10)	-23(10)	21(9)	-21(9)

^aThermal parameters as $\exp(-2p_i^2 \Sigma(U_{ij}a_i^*a_j^*h_ih_j)) \times 10^3$.

TABLE Ic. Atomic Parameters for Hydrogen Atoms^a

Atom	x/a	y/b	z/c	U
H1	0.831(15)	0.416(7)	-0.155(15)	49(0)
H2	0.348(15)	0.405(7)	-0.132(14)	40(0)
H121	0.715(13)	0.333(6)	0.287(13)	40(0)
H131	0.853(14)	0.267(7)	0.435(14)	50(0)
H141	1.053(14)	0.214(7)	0.468(14)	45(0)
H151	1.162(14)	0.263(6)	0.348(13)	41(0)

(continued)

TABLE Ic. (continued)

Atom	x/a	y/b	z/c	U	
H161	1.051(13)	0.342(6)	0.187(12)	35(0)	
H221	0.412(0)	0.251(0)	0.186(0)	80(0)	
H231	0.536(0)	0.188(0)	0.389(0)	80(0)	
H241	0.600(0)	0.256(0)	0.581(0)	100(0)	
H251	0.523(0)	0.409(0)	0.586(0)	110(0)	
H261	0.406(0)	0.474(0)	0.392(0)	70(0)	
H11	0.002(16)	0.605(7)	0.254(16)	55(0)	
H12	0.139(15)	0.624(7)	0.306(14)	55(0)	
H21	0.116(21)	0.566(9)	0.458(17)	70(0)	
H22	0.255(17)	0.541(8)	0.432(16)	70(0)	
H23	0.051(18)	0.554(9)	0.391(19)	70(0)	
H31	0.814(16)	0.528(7)	0.313(15)	60(0)	
H32	0.673(17)	0.524(8)	0.346(16)	60(0)	
H41	0.685(18)	0.631(9)	0.378(18)	70(0)	
H42	0.843(17)	0.596(8)	0.473(17)	70(0)	
H43	0.836(11)	0.631(5)	0.365(10)	0(0)	

^aCoordinates and thermal parameters as $\exp(-8p_i^2 U(\sin \theta / \lambda)^2) \times 10^3$.

Results and Discussion

The crystallization of $Co(BS)_2(EtOH)_2$ (1) is possible only from absolute ethanol solutions of anhydrous $Co(BS)_2$. From solutions of $Co(BS)_2 \cdot$ $6H_2O$ in absolute ethanol only the starting compound can be crystallized. The wine-red crystals of $Co(BS)_2(EtOH)_2$ are instable to air moisture and are transformed slowly into $Co(BS)_2 \cdot 6H_2O$.

The thermogravimetric curve of $1 (20-300 ^{\circ}C)$ shows a single step between 70 and 150 $^{\circ}C$ and the weight-loss corresponds to two ethanol molecules, the residue being identified as the anhydrous salt $Co(BS)_2$.

Table III gives the electronic spectral data (diffuse reflectance) of 1 together with those of the related compounds $Co(BS)_2$, $Co(BS)_2 \cdot 6H_2O$ and $[Co(EtOH)_6(NO_3)_2]$ [8]. The Dq value for 1 is

TABLE II. Bond Distances and Angles for Non-hydrogen Atoms

Bond distances (A)					
Co1011	2.132(8)	Co2-O21	2.135(9)		
Co1-01	2 049(8)	Co2-O2	2.056(8)		
Co1-022	2.108(7)	Co2-O12	2.062(6)		
S1-011	1.458(7)	S2-O21	1.459(8)		
S1-012	1.476(9)	S2-O22	1.451(9)		
\$1-O13	1.442(7)	\$2-C22	1.451(9)		
01–C1	1.42(2)	O2C3	1.42(1)		
C1-C2	1.48(2)	C3-C4	1.48(2)		
C11-C12	1.36(2)	C21-C22	1.42(1)		
C11-C16	1.38(1)	C21-C26	1.38(1)		
C12-C13	1.39(2)	C22-C23	1.44(1)		
C13C14	1.37(2)	C23- C24	1.38(1)		
C14-C15	1.36(2)	C24-C25	1.35(1)		
C15-C16	1.39(1)	C25-C26	1.42(1)		
Bond angles (°)					
011-Co1-O1	90.0(4)	O21-Co2-O2	92.1(3)		
011-Co1-022	88.4(3)	O21-Co2-O12	87.7(3)		
01-Co1-022	91.1(3)	02-Co2-012	88.6(3)		
013-S1-C11	107.2(4)	O23-S2-O21	107.5(3)		
012-S1-C11	103.7(4)	O22-S2-O21	105.3(4)		
012-S1-013	114.5(4)	O22-S2-O23	111.2(5)		
011-\$1-C11	106.6(4)	O21-S2-C21	106.3(3)		
011-S1-012	112.6(4)	O21-S2-O23	113.1(5)		
011-S1-013	111.5(4)	O21-S2-O22	112.9(5)		
\$1-C11-C16	117.4(7)	\$2-C21-C26	118.5(1)		
\$1-C11-C12	120.3(8)	S2-C21-C22	117.4(2)		
C12-C11-C16	122.1(9)	C22C21C26	124.1(1)		
C11-C12-C13	117.6(1)	C21-C22-C23	114.4(2)		
C12-C13-C14	121.4(1)	C22-C23-C24	121.1(1)		
C13-C14-C15	119.7(2)	C23-C24-C25	122.3(1)		
C14-C15-C16	120.8(1)	C24-C25-C26	119.7(1)		
C11-C16-C15	118.5(1)	C21-C26-C25	118.4(1)		
01C1C2	109.1(13)	O2-C3-C4	111.8(13)		
	0_н	00 0H	0_H_0		
Hydrogen bonds					
01-H1-013 (r)	$v_{z} = 0.77(17)$	2.68(1) 2.02(1	9) 144(15)		
O2-H2-O23 (x.)	(z) = 0.75(18)	2.69(1) 1.94(1	8) 173(16)		

TABLE III. Electronic Spectra (Diffuse Reflectance) of Co(BS)2(EtOH)2 and Related Compounds

Compound	Observed transitions (v	$Dq (cm^{-1})$	<i>B</i> (cm ⁻¹)		
	${}^{4}A_{2g} \leftarrow {}^{4}T_{1g}(\nu_{2})$	${}^{4}T_{1g}(P) \leftarrow {}^{4}T_{1g}(\nu_{3})$			
Co(BS) ₂ (EtOH) ₂	15038w	18939s, 20202sh, 21505sh	816	859	
Co(BS) ₂	13423w	18519s, 20833sh	712	890	
$[Co(H_2O)_6](BS)_2$	16393sh	20000s, 21739sh, 25126sh	862	907	
[Co(EtOH) ₅](NO ₃) ₂ [8]	18000w	21200sh, 19800s,	959	834	

Compound	EtOH and	EtOH and H ₂ O					
	ν(OH)	δ(OH)	vas	^v sym	δ_{as}	δ _{sym}	νcs
Co(BS) ₂ (EtOH) ₂	3992vs 3200vs	1649m 1604m	1194vs 1159vs	1129vs	560vs 570vs	494m	675sh
Co(BS) ₂			118 4 vs	1135vs	574vs	492w	672sh
$[Co(H_2O)_6](BS)_2$	3402vs 3273sh	1674m 1648m	1190vs	1127vs	576vs	484w	675w

TABLE IV. Principal IR Frequencies (ν_{max} (cm⁻¹)) of Co(BS)₂(EtOH)₂ and Related Compounds

Fig 1. Projection of the crystal structure of $[CoS_2O_8C_{16}H_{22}]_2$ on to (001) plane, showing the CoO₆ coordination polyhedron by dotted lines.

intermediate between those of $Co(BS)_2$ and $[Co-(EtOH)_6]^{2+}$, as corresponding to its composition. It is to be noted that the most intense visible band (v_3) is broad and shows one or two shoulders on the higher frequency side in all these compounds, as occurs frequently in the spectra of octahedral cobalt-(II) complexes. This fact can be due to spin-orbit coupling, low symmetry components of the ligand field or transitions to doublets.

The magnetic moment of 1 at room-temperature (4.72 BM, 294 K) is characteristic also of the low-field octahedral cobalt(II) complexes and, as occurs also frequently, in this case diminishes considerably with temperature $(4.49 \text{ BM} \text{ at } 206 \text{ K}; 4.46 \text{ BM} \text{$

151 K and 4.23 BM at 77 K), as a consequence of the splitting of the ground term ${}^{4}T_{1g}$.

Table IV shows the principal infrared frequencies observed in the spectra of 1, $Co(BS)_2$ and $Co(BS)_2$. $6H_2O$. It is to be noted that the vibrations corresponding to the $C_{3\nu}$ degenerated species of the PhSO₃⁻⁻ group in the spectra of $Co(BS)_2$ and $Co(BS)_2 \cdot 6H_2O$, $\nu_{as}(SO_3)$ and $\delta_{as}(SO_3)$, appear split in the case of 1. This fact indicates a more asymmetrical coordination of the PhSO₃⁻⁻ group through one or two oxygen atoms. Only this last possibility is consistent with the stoichiometry of 1, but the bridging or chelating nature of the bidentate PhSO₃⁻⁻ ligands cannot be deduced from the IR data.

Fig. 2. View of the two independent groups of the asymmetric unit of the structure, showing the bridging nature of the bidentate $PhSO_3$ ligands.

Description of the Crystal Structure of $Co(BS)_2$ -(EtOH)₂

The structure of 1 represented in Fig. 1, consists of polymeric chains of Co atoms (lying on two crystallographically independent inversion centers) connected by two benzenesulfonate ions acting as bridges through two oxygen atoms (Fig. 2). Each Co atom, bonded to four oxygen atoms from four benzenesulfonate ligands, completes its octahedral coordination through two oxygen atoms from ethanol molecules. The Co–O bond distances in the two distorted, but very similar, independent octahedrons are in the first:

Co(1)-O(11) = 2.132(8) ÅCo(1)-O(22) = 2.108(7) Å

$$Co(1) - O(1) = 2.049(8) Å$$

and in the second octahedron:

$$Co(2)-O(12) = 2.062(6)$$
 Å
 $Co(2)-O(21) = 2.135(9)$ Å
 $Co(2)-O(2) = 2.056(8)$ Å

The packing of the chains is determined by hydrogen bonds, which the hydroxy groups of the ethanol molecules form with the oxygen atoms of the benzenesulfonate ions not involved in the coordination of the Co atoms.

The structural data show clearly that the splitting of the degenerate vibrations ν_{as} and δ_{as} of the PhSO₃⁻⁻ group observed in the IR spectrum is due to its bidentate bridging behaviour. The electronic spectrum and magnetic moment correspond also to an octahedral coordination of six oxygen atoms, four belonging to four different sulfonate groups and the other two to the ethanol molecules in *trans* positions. The similarity with the electronic spectra and magnetic properties of the anhydrous sulfonates and those of the hexahydrate [1, 4] can be due to a similar environment of oxygen atoms of the RSO⁻, EtOH and H₂O ligands and to the similar position of these in the spectrochemical series.

References

- 1 A. L. Arduini, M. Garnett, R. C. Thompson and T. C. T. Wong, Can. J. Chem., 53, 3812 (1975)..
- 2 C. S. Alleyne, K. O. Mailer and R. C. Thompson, Can. J. Chem., 52, 336 (1974).
- 3 J. M. Taylor and R. C. Thompson, Can. J. Chem., 49, 511 (1971).
- 4 A. Guerrero et al., in preparation.
- 5 M. Martínez-Ripoll and F. H. Cano, 'PESOS', a computer program for the automatic treatment of weighting schemes, Instituto Rocasolano, C.S.I.C., Madrid, Spain, 1975.
- 6 J. M. Stewart, F. A. Kundell and J. C. Baldwin, 'The XRAY76 System', Computer Science Center, University of Maryland, College Park, Md., U.S.A., 1970.
- 7 M. Nardelli, 'PARST', Istituto di Chimica Generale, University of Parma, Italy, 1980.
- 8 P. W. N. van Leeuwen, Recl. Trav. Chim. Pays-Bas, 86, 247 (1967).